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1 Introduction

Carbon is unique among the elements in its ability to form strong chemical bonds with
a variety of coordination numbers, including two (e.g. linear chains or carbyne phase),
three (e.g. graphite) and four (e.g. diamond). Combining strong bonds with light mass
and high melting point, condensed carbon phases have many unique properties that make
them technologically important as well as scientifically fascinating.

Reducing the size of semiconductors to the nanometer scale changes the physical prop-
erties of the materials in a fundamental way. For example, semiconductor nanoclusters
exhibit an increased optical gap and narrower emission spectra when compared with bulk
values [1, 2, 3, 4]. In addition, the physical and chemical properties of semiconductor nan-
oclusters are greatly influenced by surface reconstruction and passivation [5, 6]. Quantum
confinement effects have been intensively studied theoretically and experimentally over the
last decade [7, 8, 9, 10]. These studies suggest that these nanostructures may be exploited
for specific applications in which they might be integrated within existing semiconductor
technologies to create nanoscale optoelectronic devices.

Nanometer sized diamond is a constituent of diverse systems [11], including interstellar
dusts and meteorites [12, 13], carbonaceous residues of detonation [14], and diamond-like
films. More than a decade ago the presence of nanoparticles in carbonaceous chondrites
was reported [12]. While the structural properties of nanodiamonds are basically unex-
plored, a report on its electronic properties has appeared in the literature [1]. It suggests
that reducing the size of diamond may have stronger effects on its optical gap than in the
case of Si or Ge. An ab initio study of electronic properties of hydrogenated nanodiamonds
was recently reported by Galli [15]. This calculation indicates that there are no apprecia-
ble quantum confinement effects on the optical gap of nanodiamonds for sizes larger than
1-1.2 nm, which is much smaller than in nanostructures of other semiconductors.

Artifical nanodiamond is produced by detonation of diamond containing materials
and subsequently by chemical purification. Nowdays nanodiamond has many applications,
such as: electrochemical and chemical deposition, metal matrix composite with aluminium
and copper, an additive for PTFE (Teflon), polishing pastes and suspensions, an additive
to rubber, abrasive tools, lubrificating oils, greases and coolants, systems of magnetic
recording, intermetallic on the basis of copper, zin and tin [16]. Many other applications

of this material may be discovered.



The purpose of the present study is to investigate the electronic properties of nanodi-
amond clusters with a size up to 2 nm, nanodiamond wires with a diameter of their cross
section up to 1-2 nm and nanodiamond layers with a thickness of a few nm by ab initio
molecular dynamics and by tight-binding molecular dynamics. In order to exclude the
surface reconstruction effects or the need to terminate the dangling bonds with hydrogen
the clusters and the layers will be surrounded by amorphous carbon phase. This is one
of the forms of nanodiamonds which was found in nature. To the best of our knowledge
this type of geometry has not been previously applied in this context.

Simulations of amorphous carbon and the phase transformations of carbon at the
boundary between crystalline diamond and amorphous carbon ta—C' at very high temper-
atures were carried out in the MSc thesis of Anastassia Sorkin by means of tight-binding
molecular dynamics techniques [19]. Following the computational techniques developed
in this research project the samples of nanodiamond clusters and layers of different sizes
passivated by amorphous carbon will be prepared by different conditions (temperature
and cooling rate). The structural and electronic properties of each sample will be stud-
ied. These results can help in interpreting experimental data for diamond nanoclusters
[1]. Such an investigation of the factors which influence quantum confinement effects in
nanodiamonds is a crucial step toward the utilization of these materials for new technolo-

gies.



2 Background

2.1 Diamond and graphite properties

The electronic configuration of carbon is 1s?2s22p?, i.e. four valence electrons spread in
the s and p orbitals. In order to create covalent bonds in diamond, the s orbital mixes
with the three p orbitals to form sp? hybridization. The four valence electrons are thus
equally distributed among the sp® orbitals, while each orbital points to one of the four
corners of a tetrahedron. The tetrahedral structure, together with the highly directed
charge density, give strength and stability to the bonds. Consequently, all the bonds in
diamond are of the same length (1.54 A), with the same bond angle (109.47°). Diamond
is a wide gap semiconductor (insulator) and is very hard, and has a melting temperature
of 4500 K.

In the graphite crystal, the s orbital mixes with two p orbitals only, and each of the
new three sp? orbitals points to one of the three vertices of a triangle which lies in the
x —y plane (for instance). Three electrons occupy these orbitals and one electron stays in
the p, orbital which is directed perpendicular to the x —y plane. Hence, the carbon atoms
are bonded by three o bonds (the charge density lies between two atoms) and one 7 bond
(the charge density is concentrated above and under the z — y plane, perpendicular to
the atomic bond). Since there is no preference as to which atom the p,-electron should
bond to, the 7 bond formed with all three neighbors is weaker than the o bonds, and this
electron is more free to move and contributes to conduction. Furthermore, the 7 bond
stabilizes the structure and “locks” it in the plane. The whole crystal is made of sheets
of hexagon, with carbon atoms in corners. These sheets are held together by weak Van
der Waals forces, separated by a distance of 3.40 A. This gives softness to the structure.

The stable bonding configuration of carbon at NTP is graphite, as shown in figure 1,
with an energy difference between the graphite and the diamond ground state of = 0.02
eV per atom. Due to the high energetic barrier between the two phases of carbon, the
transition from diamond to the stablest phase of carbon, graphite, at normal conditions
is very slow. This transition can also occurs more rapidly, when diamond is exposed, for
example, to ion bombardment or high temperature [19].

Bridging between these two allotropes of carbon lie a whole variety of carbon ma-
terials which include, among others, amorphous sp? bonded carbon (such as thermally

evaporated carbon), micropolycrystalline sp?> bonded graphite (such as glassy carbon),
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Figure 1: P, T phase diagram of carbon reproduced from ref. [18]

nanodiamond films, and amorphous sp® bonded carbon (sometimes referred to as amor-
phous diamond), which is structurally analogous to amorphous Si and is formed during
low energy carbon ions deposition. Another polymorphic form of carbon was discovered
in 1985. It exists in discrete molecular form, and consists of a hollow spherical cluster of
carbon atoms. Each molecule is composed of groups of sixty and more carbon atoms that
are bonded to one another form both hexagons and pentagons geometrical configuration.
The material composed of Cgg is known as buckminsterfullerene, named in honor of R.
Buckminster Fuller, who invented the geodesic dome. In the solid state, the Cgy units
form a crystalline structure and pack together in a face-centered cubic array. Molecular
shapes other than the ball clusters recently have been discovered: these include nanoscale
tubular and polyhedral structures. It is anticipated that, with further developments,
the fullerenes will become technologically important materials [20]. Their possible appli-
cations in high-temperature lubricants, microfilters, more efficient semiconductors, and
manufacturing processes [21].

Nanodiamond, the leading nanomaterial, is ball-shaped with the particle diameter

up to 15 nanometers. It is hard, chemically stable, abrasion-resistant, super corrosion-



resistant and has high heat conductivity and refractory. It also has good biological com-
patibility and cold electron emission properties. The production process of nanodiamonds
consists of two stages. The first one is instantaneous detonation of mixed high explosives
forms ultradispersive diamond-graphite powder (also known as diamond blend or DB),
a black powder containing 40-60 % of pure diamond. The second stage is the product
is a chemical purification of DB generated pure nanodiamond (also known as Ultradis-
persive detonational diamond - UDD), a grey powder containing up to 99,5 % of pure
diamond. Diamonds just 3-5 nm in diameter have recently been recovered from carbona-
ceous residues of detonations. They have also been found in meteorites and interstellar
stardust.

Nanodiamond films can be grown by different deposition techniques such as dc assisted
plasma chemical vapor deposition (CVD) from a methane-hydrogen mixture [22, 23]. The
criteria of quality of the nanodiamond films include low-contents of nondiamond phases,
nano-sizes crystallites, uniform nanocrystallinity throughout thick films and random grain

orientation.

2.2 Quantum confinement

Quantum confinement results in a shift in energy levels when the material sampled is of
sufficiently small size - typically 10 nanometers or less. This leads to change of electronic
and optical properties of nanostructures. The bandgap increases as the size of the nanos-
tructure decreases. Specifically, the phenomenon results from electrons and holes being
squeezed into a dimension that approaches a critical quantum measurement, called the
exciton Bohr raduis.

The first experimental evidence of the quantum confinement effects in clusters came
from crystalline CuCl clusters grown in silicate glasses [2]. Spectroscopic studies on these
clusters clearly indicated an up to 0.1 eV blueshift of the absorption spectrum relative to
the bulk. In the case of CdS clusters, the absorption threshold is observed to blueshift
by up to 1eV or more as the cluster size is decreased [3]. When the size of the cluster is
smaller, its band gap is larger, consequently the first absorption peak is shifted closer to
the blue.

A recent study [1] of the X-ray absorption spectra in nanodiamond thin films showed
that the exciton state and conduction band edge are shifted to higher energies with

decrease of the grain size especially when the crystallite radius is smaller than ~1.8
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nm. The conduction band of nanodiamonds with radius R > 1.8 nm, when the crystallite
contains more than 4300 C atoms, remain more or less bulklike.

Although the basic principles governing the relationship between cluster size and the
band gap appears to be understood, theoretical simulations have not been able to predict
the observed blueshift quantitatively. The effects of other factors, such as the physical

shape and crystal structure, have not yet been understood.

2.3 Effective-mass model

Brus and co-workers [7, 24] gave a very elegant analysis of the observed blueshift utilizing
a particle in a sphere and the effective mass model. They retained the effective mass
approximation for the kinetic energy of the electron-hole pair and used classical electro-
statics to determine the potential energy of interaction of the electron and the hole with
each other and the with the surface.

The onset of absorption of light by semiconductor materials is accompanied by the
creation of a bound electron-hole pair called an exciton. The effective mass model (EMM)
suggests that the effects of the interaction of the electron and the hole with the periodic
potential of the lattice is such that m, and mj, are usually less than the free-electron mass
myg. Batson and Heath [25] based on the effective mass model predicted that the shift of
conduction band edge of spherical clusters follows the equation

2
p=bet g (7).
where E,. is the bulk reference energy and m* and R are the electron effective mass in
the nanocrystal and the radius of the nanocrystal respectively. Chang et al [1] estimated
m* for their largest nanodiamonds (more than 4300 carbon atoms) to be 0.1+0.02 m.,
which is reasonably close to that of the bulk diamond, 0.2-0.25 m, [26].

The calculations based on this model have yielded the blueshift of the absorption
spectrum in reasonable agreement with experiment for large clusters [7]. However there
are deficiencies of the EMM, which contribute to the failure of the model to quantitatively

predict the quantum confinement effects in small clusters.



2.4 Previous computer simulations of the quantum confinement

effects

During the last few years, many investigations of the quantum confinement effects in
semiconductor materials were carried out by means of computer simulations. In most of
them ab initio and tight-binding molecular dynamics methods (see sections 4,5) which
allow the study of the electronic structure of materials were used.

Ab initio molecular dynamics treats the motion of the atomic core classically, while
the electron wave functions are represented in terms of a large basis set of plane waves,
keeping the energy of the whole system close to a minimum with respect to the wave
function. Such a many-body problem remains formidable even for the most powerful
computers, therefore further simplifications are needed to allow an efficient calculation of
a system consisting of many atoms. This technique with the local-density approximation
of density functional theory (see below) was used by K. E. Andersen et al [9] to investigate
the energy levels in CdSe nanocrystallites containing 17-34 atoms. The authors confirmed
that the lowest unoccupied energy state and the highest occupied energy state are strongly
affected by quantum confinement.

Small CdS and ZnS crystallite (20-2500 atoms) were investigated by a tight-binding
empirical approximation by Lippens and Lanoo [27]. Here the electron wave functions
are expanded in terms of basis set of valence electrons wave functions, rather than plane
waves, controlling the attractive part of the potential, while the repulsive part is treated
empirically. In this study a simple model of the crystal of symmetrical shape without
dangling bonds is used. The position of the exciton peak and band gap were determined
and compared with calculation based on effective-mass approximation. It has been shown
that the effective-mass calculation strongly overestimates the band gap for the smallest
size of the crystallites.

The band structure and spectral shift of CdS, CdSe, CdTe, AIP, GaP, GaAs and InP
semiconductor nanoclusters were calculated using an empirical pseudopotential by Rama
Krishna et al [8]. The authors replaced the exact crystal-field potential experienced by
the valence electrons to an effective potential (pseudopotential). For CdS clusters the
calculation had yielded exciton energies in excellent agreement with experiment over a
wide range of cluster sizes. The authors also found that not only the size of nanoclusters

but the shape, crystal structure and lattice constant of the unit cell all have significant



effect on the exciton energies.

The discovery of photoluminescence (PL) in Si and Ge nanocrystals [28, 4] stimulated
great interest in these indirect-gap semiconductors crystallites in the last decade. The
empirical pseudopotentials method was used to study the electronic and optical proper-
ties of Si cubic prism with edge of the cube d ranging from 10 A to 30 A [29]. It is found
that the energy gap vary with equivalent diameter d as d='3". Yeh et al [30] used an-
other pseudopotential for [001]Si quantum wires with square cross sections ranging from
T.TX7.7 10 26.9%26.9 A with a free surface but without hydrogen and wires with hydrogen
chemisorption on the surface. They found that in both cases the band gap increases as the
wire diameter decreases due to quantum confinement, however hydrogen chemisorption
acts to reduce the gap.

Niquet with co-workers [31] proposed a new parameterization for tight-binding model:
the orthogonal third-nearest-neighbor sp®> TB model, designed to give accurate results
in the calculation of confined edge states in semiconductors. They applied it to silicon
nanostructures (films, wires and dots) with large range of sizes (1-12 nm) with various
shapes and orientations. Surface dangling bonds were saturated with hydrogen atoms.
They found that for spherical and cubic Si dots the curves of size dependence of highest
occupied state and lowest unoccupied state in the entire size range are fitted by expression
K/d?, were d is the characteristic dimension of the nanostructure and K is an adjustable
constant. They repeated their calculation with Ge nanocrystals [32] up to 12 nm (~50000
atoms) with dangling bonds passivated by hydrogen atoms. In the case of Ge the results
for a gap disagreed with experimental photoluminescence data. This means that the PL in
Ge cannot be explained by a simple quantum confinement model. Finally the authors used
their model to investigate the quantum confinement effects in amorphous silicon layers
[33] with thickness below 3 nm. The calculated confinement effect of the amorphous slabs
remains noticeable but weaker than in crystalline Si slabs.

Si and Ge nanoclusters were intensively studied by ab initio methods. For example,
Ogut and Chelikowsky [10] found the exciton energy and band gap of hydrogen-passivated
spherical Si clusters with diameter up to 27.2 A (~ 800 Si and H atoms) calculated
by an ab initio method to be in very good agreement with experiment. The largest
radius of hydrogen-passivated Si clusters in ab initio study of Delley and Steigmeier [34]
was 3 nm (706 Si atoms). Their results suggest that the density-functional band gap

scales linearly with d~!, where d is the cluster diameter. The calculated gap covered
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the spectral range of experimentally observed photoluminescence peaks for the reported
size range of Si nanocrystalline structures. Buda et al [35] used an ab initio method for
electronic-structure calculation of Si wires with diameter up to ~ 1.5 nm. Instead of the
indirect gap of crystalline bulk silicon, the band structure of these wires showed a direct
gap at k = 0. E. Draeger et al [5] examined the experimental assumption that optical
properties of silicon nanoclusters vary significantly depending on the synthesis technique.
Using the ab initio method they modeled the SiggHg, SiggH1o, SiggHag, SiggHos and SizgHoo
nanoclusters with different core structures and different surface passivation which were
prepared by relaxation of amorphous clusters at different temperatures with presence of
different number of the passivant atoms. They showed that these metastable structures
in fact possesses different optical properties, this may be responsible for experimentally
observed luminescence. Significant changes which occur in the gap of Si nanoclusters
when the surface contains passivants other than hydrogen have been studied by Puzder
with co-workers from the same group [6]. They predicted that double bonded groups,
like oxygen, strongly affect the optical gap comparing with hydrogen, while other single
bonded groups have minimal influence.

In contrast to these numerous computer simulation studies of Si and Ge nanostruc-
tures, an interest to carbon nanostructures is still in the early stages. Recently Raty et al
[15] presented ab initio calculations based on density-functional theory (DFT) in order to
investigate a quantum confinement effects in hydrogenated nanodiamonds. They detected
a rapid decrease of the DF'T energy gap from a value of 8.9 eV in methane to 4.3 eV in
Cg7Hzg. The last value is very close to that of the bulk diamond (4.23 eV), obtained
using the same method. The computed bulk gap is smaller than the experimental one
(5.47 V), due to well-known error of local density approximations which usually under-
estimate band gaps in semiconductors and insulators. This indicate that in contrast to Si
and Ge where quantum confinement effects persists up to 6-7 nm, in diamond there is no
detectable quantum confinement for sizes larger than 1-1.2 nm. In addition the authors
predicted a slight influence of surface structure reconstruction by hydrogen atoms on the

optical properties.
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3 Goal of the research

In the present research project, the structural and electronic properties of small diamond
nanostructures (clusters, wires and layers) embedded in amorphous carbon will be investi-
gated. The prime interest of this study is quantum confinement effects in nanodiamonds,
i.e dependence of electronic properties (width of band gap) on the size of these nanos-
tructures. It is well known that the quantum confinement effects are responsible for
photoluminiscence in Si and Ge nanoclusters. The exciton state in nanodiamonds is also
shifted to higher energies with decrease of the nanocluster size [1].

Previous computational studies showed that the choice of surface passivant or type
of a surface reconstruction influence the band gap of nanoparticles in vacuum [6]. In
experiments the formation of nanodiamond clusters can occur in bulk. Lifshitz et al
[37] proposed a model for diamond nucleation in a dense, amorphous carbon matrix.
This process via bias-enhanced nucleation occur in subsurface layers, ~ 1 to 2 nm below
the surface. These diamond clusters grow up to several nm (10* to 3x10* atoms). In
the present simulation the clusters, the wires and the layers will be surrounded by an
amorphous carbon phase. This type of surface passivation has not been previously used
for a quantum confinement investigation of nanoparticles, although this situation is more
realistic than nanodiamonds in vacuum. A recent calculation of Fyta et al [36] showed
that diamonds are stable structures in amorphous carbon matrices with an sp® fraction
over 60 %.

The diamond nanoclusters, nanowires and nanoslabs surrounded by an amorphous
carbon structure will be built using tight-binding molecular dynamics. The diameter of
the nanostructures (thickness of nanolayers) will be varied from 3.55 A to 14.2 A, i.e
from 1 to 4 diamond unit cells, the thickness of the surrounded amorphous phase also
will be varied. An outer layer of an initially perfect diamond sample will be heated
up to very high temperatures (~15000- 40000 K). This melting will be followed by a
rapid cooling and relaxing. Recent simulations of A. Sorkin [19] showed that by this
means this outer envelope should transform to an amorphous phase. In her MSc thesis
A. Sorkin investigated transformations of layers of diamond with different thickness (from
14.2 A to 21.3 A ) sandwiched between layers of frozen diamond (with thickness of 7.1 A)
which occur after heating of the inner layers to a very high temperatures and subsequent

quenching. With periodic boundary conditions these structures containing amorphous
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carbon layers surrounded by perfect diamond layers can be imagined as a diamond layers
of 7.1 A thickness with a surface passivated by amorphous carbon.

Structures similar to those that will be studied in the present project were prepared by
Oren Hershkovitz [38], using the same techniques developed by A. Sorkin for her slab sam-
ples. The author built a cubic diamond 7.1x7.1x7.1 A embedded into a 14.2x14.2x14.2
A cubic amorphous carbon sample containing 512 atoms. This structure was obtained by
heating the outer layers up to 35000 K and then instantly quenching. The a — C' envelope
consists of 73 % of sp? and 27 % of sp® coordinated atoms.

In the present research the structures mentioned above will be generated by using
the tight-binding molecular dynamics method (the method will be described below in
more details). Here, only a reduced basis of four orbitals is used, and an empirical
functional describes the repulsive part of the interatomic interaction. This model is less
accurate than the ab initio but much less computationally expensive. Another advantage
of the tight-binding model is its transferability, i.e. the parameters of the model have
been chosen to describe successfully different carbon polytypes: diamond, graphite, linear
chains, fullerenes [39], as well as a disordered carbon structures like liquid and amorphous
carbon phases [40, 41].

The electronic properties of these nanostructures will be then studied as a function of
their size and dimension. It is expected that the width of the band gap will be dependent
on the ratio of sp?/sp® coordinated atoms in the outer amorphous carbon layers, which
in turn depends on the sample preparation conditions. These expectations are supported
by the MSc of A. Sorkin, where the ratio of sp?/sp® coordinated atoms in the heated
amorphous carbon layers and the band gap of whole sample were very sensitive to heating
temperature, cooling rate and thickness of the heated layers. Measurements of the band
gap will be carried out by both tight-binding as in the MSc thesis and by ab initio
techniques. In these methods the electronic density of states is obtained automatically in
the process of calculation. Ab initio is a more accurate model based on density functional
theory (see below). In this model, the local density approximation (LDA) is used for the
exchange-correlation interaction. In most calculations, plane waves are used as a basis
for the electronic wave functions, and pseudopotentials describe the interaction between
the valence electrons and the ionic core. The ionic cores are considered in their ground
state at any moment for a particular instantaneous ionic configuration, and the electronic

and ionic degrees of freedom can therefore be separated. At each time step the atoms are
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considered to be classical particles, which means that Newton’s equations can describe
their motion.

Periodic boundary conditions will be applied to the problem in all three directions, this
means that the unit cell is periodically replicated in all direction to form a macroscopic
sample. The duration of calculation will long enough in order to let the structure reach
equilibrium. In order to understand the geometry of the obtained structures and the exact
structure of the boundary region between diamond and amorphous phase visualization of

the heating of the amorphous carbon layers will performed.
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4 Ab initio molecular dynamics

The term ab initio molecular dynamics is used to refer to a class of methods for studying
the dynamical motion of atoms, where a huge amount of computational work is spent on
solving numerically, as exactly as is required, the entire quantum mechanical electronic
structure problem. These methods are extremely accurate but their computational cost
is so heavy, that ab initio calculations are restricted to a few tens of atoms in short
simulation time (~10 ps). The ab initio model based on density functional theory in the
local-density approximation was [42] chosen for the present calculations because in spite
of its high computational cost, this method gives precise electronic structure information
and accurately describes phenomena where quantum mechanical effects are essential.
Prediction of the electronic and geometric structure of a solid requires calculation
of the quantum mechanical total energy of the system and subsequent minimization of
the energy with respect to the electronic and nuclear coordinates. Because of the large
difference in mass between electrons and nuclei, the electrons respond instantaneously
to the motion of the nuclei. Thus the nuclei can be treated adiabatically, leading to
a separation of electronic and nuclear coordinated in the many body wave function -
the Born-Oppenheimer approximation [43]. This approximation reduces the many-body

problem to the solution of the electrons in some frozen-in configuration of the nuclei.

4.1 Density functional theory

The most difficult problem in any electronic structure calculation is posed by the need
to take into account the effects of the electron-electron interaction. The wave function
of a many-electron system must be antisymmetric under exchange of any two electrons
because electrons are fermions. The antisymmetry of the wave function produces a spatial
separation between electrons that have the same spin and thus reduces the Coulomb
energy of the electron system. The reduction in the energy of the electronic system is
called the exchange-correlation energy.

Density functional theory was developed by Hohenberg and Kohn [44] in 1964 and
Kohn and Sham [45] in 1965. It provides some hope of a simple method for describing the
exchange-correlation effects in an electron gas. The Kohn-Sham total energy functional

for a set of doubly occupied electronic states, ¢;, can be written:
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where E;,, is the Coulomb energy associated with interaction among the nuclei (or ions) at
positions [R;], Ve, is the static total electron-ion potential, n(r) is the electronic density,
given by

r) =23 () 2)

and Exc[n(r)] is the exchange-correlation functional.

Only the minimum value of the Kohn-Sham energy functional has physical meaning.
At the minimum, the Kohn-Sham energy functional is equal to the ground-state energy
of the system of electrons with the ions in positions [R;].

It is necessary to determine the set of wave functions ¢); that minimize the Kohn-Sham
energy functional. These are given by the self-consistent solutions to the Kohn-Sham

equations:
h2
— 5V 4 Vien + Vi + ch] i = 5i(r), (3)

where v); is the wave function of electronic state 7, ¢; is the Kohn-Sham eigenvalue, and

Vy is the Hartree potential of the electrons given by

r) = e / 7|:(_T2I|d3r'. (4)

The exchange-correlation potential, Vx¢, is given formally by the functional derivative

6Exc[n(r)]

Vielr) = 528 )

The simplest method of describing the exchange-correlation energy of an electronic
system is to use the local density approximation (LDA) [45], which is almost universally
used in total energy pseudopotential calculations. In the local density approximation the
exchange-correlation energy of an electronic system is constructed by assuming that the
exchange-correlation energy per electron at a point r in the electron gas, e xc(r), is equal
to the exchange-correlation energy per electron in a homogeneous electron gas that has

the same density as the electron gas at point 7. Thus
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Exco[n(r)] = / exe(r)n(r)dr (6)

and
6Exc[n(r)] _ 0n(r)exc(r)]
on(r) on(r) (M)
with
exc(r) = i@ n(r)). (8)

The local-density approximation assumes that the exchange-correlation energy func-
tional is purely local. Several parametrizations exist for the exchange-correlation energy
of a homogeneous electron gas (Wigner [46], Kohn and Sham [45], Hedin and Lundqvist
[47], Perdew and Zunger [48]), all of which lead to total-energy results that are very

similar.

4.2 Periodic supercell

Bloch’s theorem states that in a periodic solid each electronic wave function can be written

as the product of a cell-periodic part and a wave-like part [49]

Yi(r) = explik * 7] f;(r). (9)
The cell-periodic part of the wave function can be expanded using a basis set consisting

of a discrete set of plane waves whose plane wave vectors are reprocical lattice vectors of

the crystal,

fi(r) = cigexp[iG * r], (10)

where the reciprocal lattice vectors G are defined by G %[ = 27mm for all [ where [ is a
lattice vector of the crystal and m is an integer. Therefore each electronic wave function

can be written as a sum of plane waves,

vi(r) = XG: Cik+cexpli(k + G) = ). (11)

The Bloch theorem changes the problem of calculating an infinite number of electronic
wave functions to one of calculating a finite number of electronic wave functions at an

infinite number of k£ points. However the electronic wave functions at £ points that are
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very close together will be almost identical. Hence, it is possible to represent the electronic
wave functions over a region of k£ space by the wave functions at a single k-point. In this
case the electronic states at only a finite number of k£ points are required to calculate the
electronic potential and hence determine the total energy of the solid. Methods have been
devised for obtaining very accurate approximations to the electronic potentials and the
contribution to the total energy from a filled electronic band by calculating the electronic
states at special sets of k points [50, 51]. Using these methods, one can obtain an accurate
approximation for the electronic potential and the total energy by calculating electronic
states at a very small number of £ points.

Bloch’s theorem states that the electronic wave functions at each k£ point can be ex-
panded in terms of a discrete plane-wave basis set. In principle, an infinite plane-wave
basis set is required to expand the electronic wave functions. However, the coefficients
¢ik+c for the plane waves with small kinetic energy (h®/2m)|k+G/|? are typically more im-
portant than those with large kinetic energy. Thus the plane-wave basis can be truncated
to include only plane waves that have kinetic energies less than some particular cutoff
energy. Introduction of an cutoff energy to the discrete plane-wave basis set produces a
finite basis set.

When plane-waves are used as a basis set for the electronic wave functions, the Kohn-
Sham equations assume a particularly simple form. Substitution of Eq.(11) into (3) and

integration over r gives the secular equation

h2
> %Us} + Gdce + Vin(G — G') + +Vu(G — G + +Vxc(G — G| cipra =

Gl
=¢€iCipra- (12)

In this form, the kinetic energy is diagonal, and the various potentials are described in
terms of their Fourier transforms. Solution of Eq. (12) proceeds by diagonalization of
a Hamiltonian matrix whose matrix elements Hy g+ are given by the terms in the
brackets above. The size of the matrix is determined by the choice of cutoff energy
(R?/2m)|k + G|

The Bloch theorem can be applied neither to a system that contains a single defect
nor in the direction perpendicular to a crystal surface. Calculation using plane-wave
basis set can only be performed on these systems if a periodic supercell is used. The

supercell contains the defect surrounded by a region of bulk crystal. Periodic boundary
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conditions are applied to the supercell so that the supercell is reproduced throughout
space. Therefore the energy per unit cell of a crystal containing an array of defects is
calculated, rather than the energy of a crystal containing a single defect. It is essential to
include enough bulk solid in the supercell to prevent the defects in neighboring cells from

interacting with each other.

4.3 Pseudopotential approximation

A plane-wave basis set is usually very poorly suited to expanding electronic wave functions
because a very large number of plane waves are needed to expand the tightly bound core
orbitals and to follow the rapid oscillations of the wave functions of the valence electrons
in the core regions. These oscillations maintain the orthogonality between the core wave
functions and the valence wave functions, which is required by the exclusion principle.
The pseudopotential approximation [52, 53, 54| allows the electronic wave functions to be
expanded using a much smaller number of plane-waves.

It is well known that most physical properties of solids are dependent on the valence
electrons to a much greater extent than the core electrons. The pseudopotential approx-
imation exploits this removing the core electrons and by replacing them by a weaker
pseudopotential that acts on a set of pseudo wave functions rather than the true va-
lence wave functions. The pseudopotential is constructed ideally, so that its scattering
properties or phase shift for the pseudo wave functions are identical to the scattering
properties of the ion and the core electrons for the valence wave functions, but in such a
way that the pseudo wave functions have no radial nodes in the core region. Outside the
core region the two potentials are identical, and the scattering from the two potentials is
indistinguishable.

Various groups have now introduced pseudopotentials of many elements that work
extremely well [55, 56].

4.4 Computational procedure with matrix diagonalization

The sequence of steps required to carry out a total energy pseudopotential calculation with
conventional matrix diagonalization techniques is shown in the flow diagram in Fig. 2. The
procedure requires an initial guess for the electronic charge density, from which the Hartree

potential and the exchange-correlation potential can be calculated. The Hamiltonian
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Figure 2: Flow chart describing the computational procedure for the calculation of the

total energy of a solid, using conventional matrix diagonalization (taken from [42]).

matrices for each of the k£ points included in the calculation must be constructed, as in
Eq. (12), and diagonalized to obtain the Kohn-Sham eigenstates. These eigenstates will
normally generate a different charge density from the one originally used to construct the
electronic potentials, and hence a new set of Hamiltonian matrices must be constructed
using the new electronic potentials. The eigenstates of the new Hamiltonians are obtained,
and the process is repeated until the solutions are self-consistent. To complete the total
energy calculations, tests should be performed to ensure that the total energy is converged
both as a function of the number of £ points and as a function of the cutoff energy for

the plane-wave set.
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5 Tight-binding model

Tight-binding molecular dynamics is a useful method for studying the structural, dynam-
ical, and electronic properties of covalent systems. The method incorporates electronic
structure calculation into molecular dynamics through an empirical tight-binding Hamil-
tonian and bridges the gap between ab initio molecular dynamics and simulations using

empirical classical potentials.

5.1 The bond energy model

The tight binding model has been developed on the basis of two major approximations.
The first to be considered is the adiabatic approximation [43], which is based on the
fact that electrons move typically ~ 10? — 103 faster than the ions. The latter can thus
be considered in their ground state at any moment for a particular instantaneous ionic
configuration, and the electronic and ionic degrees of freedom can therefore be separated.
The second approximation consists in reducing the N-body problem to a one-electron
scheme, where each electron moves independently of the others, and experiences an effec-
tive interaction due to the other electrons and to the ions. Within these approximations,

the one-particle electronic part of the total Hamiltonian can be written in the form

H= Te + ﬁee + Ueia (13)
where Te is the kinetic energy operator of the electrons, Uee and Uei are the electron-
electron and electron-ion interactions respectively. Following the notation of Horsfield et.

al. [59], the single-particle Schrodinger equation is
Hin) = €™|n), (14)

where |n) is a single particle (doubly occupied) eigenfunction, and (™ is the corresponding
eigenvalue. It has to be mentioned that the k dependency of |n) and €™ does not appears
explicitly in the notation for clarity. The eigenfunctions are expanded in an atomiclike
(Léwdin) orbitals set [57]

[n) = Y C2ia) (15)

where 7 is a site index and « an orbital index. It has to be noted that the basis used

to expand the wave functions may be non-orthogonal. However, in the present work,
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orthogonal basis functions are used. The influence of this choice on the results will be
discussed further.
Taking into account the orthonormality of the eigenstates, the eigenvalues and eigen-

states of the Hamiltonian are therefore found by solving the matrix equation

> HiajsClp) = WO, (16)
B
where
Hiojs = (iaH|jB) (17)
are the matrix elements and
S W = S (nlia) (ialm) = 6, m. (18)

The off-diagonal matrix elements H;q j3 = (ioz|ﬁ|jﬁ), for it # jf3, are called hopping
integrals, and the on-site elements H;,;, are the atomic orbital energies. In the tight
binding approach, these hopping integrals and the on-site matrix elements are constants
to be fitted on the basis of the following approximations:

(i) Only atomic orbitals whose energy is close to that of the energy bands on is inter-
ested in, are used [58]. This is the minimal basis set approximation. Thus, for instance,
only the 2s (one orbital) and 2p (three orbitals: py, py, and p,) orbitals are considered in
the case of diamond and 3s and 3p orbitals for silicon, to describe the occupied (valance)
bands. For these two materials there are 16 possible hopping integrals. However, it can
be shown [60] that only hopping integrals between orbitals with the same angular momen-
tum about the bond axis, are non-vanishing. There remain therefore just four nonzero
hopping integrals, labeled (sso), (spo), (ppo), and (ppr). o stands for orbitals with 0
angular momentum about the bond axis and 7 for orbitals with angular momentum =+
1. The dependence of these hopping integral in the distance between the atoms will be
considered further.

(ii) One considers only hopping integrals between two atoms separated by a distance
shorter than a suitable cutoff. Obviously, to reduce the number of parameters to be fitted,
a cutoff which includes the nearest neighbors is appropriate. However, the orthogonal-
ized functions (Lowdin) extend further than those (non-orthogonal) from which they are

derived, because the orthogonalization procedure involves orbitals from nearby atoms.
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Thus, interactions extending beyond first nearest neighbors have to be taken into account
when an orthogonal basis is used.

Considering the approximations above, the off-diagonal elements of the Hamiltonian
matrix Hi, ;s = (ia|H|jB) (for ia # jB) are fitted to electronic band structure of the
equilibrium crystal phase, as calculated by more accurate first-principle models [61]. Sets
of hopping integrals can thus be obtained for each crystalline structure considered.

The tight-binding expression for the binding energy of a system with N atoms [63] is
given by :

Ebinding = Ebs + Erep =2 Z e(n) + Erep (19)

n(occ.)
where Ey is the band energy and E,, is the repulsive potential, given as a sum of pair
potentials. €™ are the eigenvalues obtained from the diagonalization of the Hamiltonian
matrix. Within the adiabatic approximation, the electrons are assumed to be in their
ground state, so that all the states below the Fermi level are occupied, and the summation
that appears in the band energy is made over these occupied k states. FE,., accounts for the
ion-ion repulsion, for the double counting of electron-electron interactions that appears in
the band energy, for the repulsion of overlapping orbitals due to Pauli’s principle and for
the exchange-correlation energy related to the N-body electronic interaction. The form of

the repulsive energy E.e, proposed by Xu et. al. [63] and used in the present research is

Erep = Zf (z ¢(TZ])> ’ (20)

where f is a functional expressed as a 4th-order polynomial, ¢(r) is a pairwise potential
between atom ¢ and atom j, and described below, and r;; is the interatomic distance

between the atoms.

5.2 The rescaling functions

As mentioned above, the elements of the Hamiltonian matrix are fitted to first-principle
calculations for different equilibrium structures [61]. To describe the properties of non-
equilibrium structures, as amorphous solids or liquids, the hopping integrals and the
repulsive energy should be rescaled with respect to the interatomic distance. The rescaling

functions proposed by Goodwin et. al. [62] greatly improve the transferability of the tight
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binding model to structures not included in the parameterization. These functions are

now widely used, in the slightly improved form proposed by Xu et. al. [63]

h(r) = ho(ro/r)" exp{n[=(r/re)" + (ro/re)™]}, (21)

for the rescaling of the hopping integrals, and

¢(r) = do(do/r)™ exp{m[—(r/de)™ + (do/dc)™ ]} (22)

for the repulsive potential. In the rescaling functions found by Goodwin em et. al., the
parameters n, and 7. were the same as m,. and d,. respectively. All the parameters appear-
ing in the rescaling functions are obtained by fitting first principle results of energy versus
nearest-neighbor interatomic distance for different crystalline phases, given equilibrium
sets of hopping integrals for these structures. In this way, the tight binding model is

transferable to different atomic environments.
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6 Numerical techniques

6.1 Force calculation

We can express the forces acting on the atoms in a compact form, by first defining the

density matrix

piajs = 3 CHC (23)
n(occ.)

(occ.

The cohesive energy thus becomes
Etot = 2 Z pj,B,iaHia,jﬂ + Urep (24)
io,j B
The forces acting on the atoms are then obtained by differentiating the cohesive energy

with respect to atomic positions, that is

OFEot
F, = — 2
k 3rk ( 5)
0H,;, ; oU,
- _I9 o ia,j B rep ) 9
{ i%ﬂpjﬂ’m Ory ! Ory } ( 6)

6.2 Equations of motion

Once the forces which act on each atom 7 are calculated, we solve the differential equations:

d?Ry; oF

fai =m P = _8RM~ (27)
dRai
Vai = dt (28)

in order to obtain the position R; and the velocity vy of each atom of mass m as a function
of the time t. I is the atom in consideration and « the coordinates x, y and z. In order
to solve the Newton’s equations (27) and (28) for coordinates z, y and z and velocities

Uz, Uy and v,, the algorithm Verlet was used.

6.3 The Verlet algorithm

To derive the Verlet algorithm, we start with a Taylor expansion of the coordinate of a

particle, around time ¢,
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ft) At?

dt+Aﬂ:ray+MQAr+55Aﬁ+~§—F+Ouuﬁ, (29)
similarly,
r(t — At) = r(t) —v(t) At + J%)At? — A3—f3 r 4+ O(AtY). (30)
Summing these two equation, we obtain:
r(t+ At) +r(t — At) = 2r(t) + %Aﬁ + O(AtY) (31)
or
r(t 4+ At) = 2r(t) — r(t — At) + %At? (32)

One can derive the velocity from knowledge of the trajectory:

t+ At) +r(t — At)
2A¢

o(t) = 1L + O(AB). (33)

6.4 General description of the calculations

The Oxford Order N (OXON) [64] package is one of those that will used in the present
project. This is a set of programs for carrying out atomistic static and dynamic calcula-
tions using potentials which are based on tight-binding methods.

The tight-binding method will be employed in the calculations to describe interactions
between carbon atoms. With this method, the molecular dynamics technique will be
applied to calculate the positions and the velocities of the atoms as function of the time.
In the MD calculation, Newton’s equations of motion will be solved using the Verlet
algorithm. The MD time step will 0.5 x 107 *® s. Periodic boundaries conditions will
applied to the sample.

The ABINIT code [65] will be used to calculate the exact electronic structure of ob-
tained samples. ABINIT is a package which allows to find the total energy, charge density
and electronic structure of systems made of electrons and nuclei (molecules and periodic
solids) using ab initio approximations described in section 4 with many pseudopotential
types. The code carries out automatic k-point sampling of the irreducible Brilliouin zone.

In order to calculate the ratio of sp? to sp? bonded atoms, as well as the radial and
angle distribution functions of the structures of amorphous carbon generated a FORTRAN

program was written.

26



6.5 AViz

Our computational physics group developed the Atomic Vizualization package AViz [66].
This is very powerful vizualization tool which helps to enhance 3D perception. It includes
various options which let one to rotate the still sample, change relative sizes of atoms,
create animations and movies, add and remove the bonds and borders of the sample, use
color coding, slice the sample and much more.

The Atomic Vizualization package AViz will be used in all stages of this work. A
vizualization of our nanodiamond samples with color coding for different atomic bonding
will help to clarify the structure of amorphous envelope and boundary region between
diamond and amorphous carbon. It will be essential for understanding how the these

regions affect quantum confinement effects.
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7 Preliminary results

7.1 Test of ab initio code

The OXON code was used extensively in [19], so we do not need to test it here. Another
code, which we will use in this project, is the ABINIT code. This is an accurate tool to
measure electronic properties of our samples. This code requires very carefull choosing of
the pseudopotential for carbon, its cutoff energy and k-point sampling. The choise should
be adjusted in well-known situation. In order to check the reliability of the ABINIT code
[65] based on density functional theory within local-density approximation a calculation
of the location of hydrogen in diamond was carried out and results was compared with
previous calculations [67]. The nonlocal norm-conserving pseudopotential of Troullier-
Martin [55] was used in these simulations. With this choice of pseudopotential, the
kinetic energy cutoff of up to 30 Ry lead to good convergence with respect to plane-wave
basis. Perfect diamond cubic cells with diameter from 3.55x3.55x3.55 A (8 atoms) to
7.1x7.1x7.1 A (64 atoms) was used, and a 2x2x2 Monkhorst-Pack k-point mesh [51]
was employed.

According to [67] the most important interstitial sites of hydrogen in the diamond
structure are: the T-site which lies equidistant from four carbon sites and possesses Ty
symmetry, the H-site which lies midway between two T-sites and possesses D3; symmetry
and the bond-centered (BC) site is the mid-point between two carbon atom site (Dsy
symmetry).

To confirm this simulations were carried out at 0 K. An atom of hydrogen was placed
at different positions inside a diamond lattice. In each step the interatomic forces were
computed, and the atoms were moved in the force gradient directions. The simulation
will stop if the forces are below some value selected as the stopping criterion.

In the cases where the hydrogen atom was placed in a position located on the line
connecting two carbon atoms (independently of the distance from the carbon atoms)
or on a line perpendicular the C-C bond (which cross the bond midway with an angle
between this C-C bond and C-H bond were up to 15°) the hydrogen atom transferred to
the BC-site (see Fig. 3). The diamond lattice was distorted, the carbon atoms neighboring
to a hydrogen atom being pushed apart such that the C-C distance was larger than in
diamond (1.54 A). The C-H bond length and the new C-C distance were measured and

have been found to be in excellent agreement with an ab initio calculations of Goss [67]
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C-H distance A | C-C dilation (%) | Method
1.13 52 Tight-binding 64-atom supercell [68]
1.17 47 Ab initio (LDA-DFT) 64-atom supercell [67]
1.17 47 present simulations, 8 and 64-atom supercells

Table 1: Properties of BC position of hydrogen in diamond

2

X

Figure 3: BC-site of hydrogen atom in diamond, green atom is a hydrogen, violet atoms

are carbon, small blue atoms represent undistorted diamond lattice.
[b]

(see Tab. 1).

In most of cases, calculations of the location of hydrogen in diamond initially placed
in a random position have led it to T-site (see Fig. 4). In the T-site a hydrogen atom
is located at a distance of 1.55 A from neighboring carbon atoms, this is very close to
diamond bond length (1.54 A). The potential well of the H-site was found to be very
narrow. Only hydrogen atoms which initially have been placed exactly at the H-site,
have not escape from there (see Fig. 5). The energies of hydrogen in the various sites in
diamond varies considerably, for example BC-site have lowest energy. Table below 2 lists
the relative energies of hydrogen at the H, T and BC-sites (in eV).

A new hydrogen site was found at finite temperatures by D. Saada et al. [68] and
confirmed by O. Hershkovitz [38] using tight-binding techniques. This structure was
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BC| T H | Method

0.0 | 0.5 | - | Tight-binding 64-atom supercell [68]

0.0 | 1.0 | 1.7 | Ab initio (LDA-DFT) 64-atom supercell [67]
0.0 | 1.16 | 1.94 | Ab initio (LDA-DFT) [69)

0.0 | 1.17 | 1.79 | present simulations, 8-atom cell

Table 2: Relative energies of different positions of hydrogen in diamond

Figure 4: T-site of hydrogen atom in diamond, green atom is a hydrogen, violet atoms are
carbon, yellow atoms represent undistorted diamond lattice atoms and the initial position

of the hydrogen is shown by red ball.
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Figure 5: H-site of hydrogen atom in diamond, green atom is a hydrogen, violet atoms

are carbon.

labelled equilateral triangle (ET) due to the two sets of three equivalent sites around the
C-C bond that the H atom could adopt. The length of C-H bond is 1.08 A, that is closer
than BC site. The ET-site was predicted to be 1.4 eV lower in energy than the BC-site.
However, ab-initio calculations of Goss [67] and the present calculations carried out at at
0 K shows that this site is unstable: hydrogen atoms initially placed in the ET-site have
migrated to BC-site (see Fig.6).

These results are in good agreement with previous calculations of Goss [67], so the
ABINIT code with the Troullier-Martin pseudopotential and chosen cutoff energy may

become an appropriate instrument for further calculations to resolve this issue.

7.2 Geometry and preparation of nanodiamonds structures
7.2.1 Nanodiamond layers inside amorphous carbon phase

Nanodiamond sheets surrounded by amorphous carbon sheets were generated and de-
scribed in the Msc thesis of Anastassia Sorkin. Three different unit cells with a density
of 3.5 g/cc, initially arranged as a perfect diamond crystal, were constructed, their sizes
are 2 x 2 x 6 (192 atoms), 2 x 2 x 7 (224 atoms) and 2 x 2 x 8 (256 atoms). The

32 upper and 32 lower atoms of each sample were frozen, i.e. the motion of these atoms
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Figure 6: Migration (small green balls) of hydrogen atom from ET to BC-site, green
atom is a hydrogen, violet atoms are carbon, yellow atoms represent undistorted diamond

lattice, initial ET position of hydrogen is shown by red ball.
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was forbidden. The remaining central layers were heated up to temperatures of 14000-
30000 K. Once the hot liquid layers reached equilibrium, the central layers were cooled
to the room temperature of 300 K by a cooling rate of 10 K/fs. After cooling the hot
layers remained partially or entirely amorphous with the presence of three- and two- fold
coordinated atoms in the structure. By this way the structures of amorphous carbon
located between two layers of diamond of 32 atoms each were constructed. With periodic
boundary conditions this sample can be imagined as diamond layers surrounded by two
layers of amorphous carbon see Fig. 7. The thickness of this diamond frozen layer in all
three samples was 7.1 A (32 + 32 =64 atoms), and the thickness of the hot layers varied
from 7.1 (64 atoms) to 10.65 A (96 atoms) for these three samples.

Moreover it turned out that the volume of the region, which returns to diamond as
well as a volume of remaining amorphous region and sp?/sp® ratio in this amorphous
region strongly depended on the temperature of heating and the thickness of the hot
layers [19]. It means that that a size of our diamond nanolayers can be changed not only
by simple increasing of frozen diamond layers, but by increasing of heating temperature.
If the heating temperature was too low (depending on thickness of the hot layers), the
amorphous region were too thin (thinner than 3.5 A, that is cutoff radius of interaction
between carbon atoms), and diamond layers could interact across this amorphous region
(for example see Fig.8). Such a samples were discarded from further calculations.

The structures were found to be very stable during further relaxation at a temperatures
up to 10000 K during 3 ps. The structural and electronic properties of each sample were
studied. The sp?/sp® coordinated atoms ratio, thickness of diamond layer and band gap
of each sample calculated by tight-binding method are represented in Table 3 below. The
results do not show quantum confinement effects, i.e. the band gap of the whole sample
does not increase with decreasing of the thickness of the diamond layer, even for the
samples with the same value of the sp?/sp® ratio. It can be explained by the fact, that
thickness of outer amorphous layers in these samples is different, and electronic properties
of the sample depend not only on quantum confinement and the sp?/sp® ratio, but on

thickness of amorphous layers and individual configuration of each sample.

7.2.2 Nanodiamond cluster surrounded by amorphous phase

The sample of diamond cluster surrounded by amorphous carbon (see Fig.9) was generated

by O. Hershkovitz and forwarded to us for further studies. This sample contain 512
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Figure 7: The sample of amorphous carbon located between two layers of diamond (left)
and the same sample imagined as diamond located between two layers of amorphous
carbon (right). The sample contain 256 atoms (64 of them are frozen diamond), temper-
ature of heating was 23000 K. Red balls represent fourfold coordinated atoms, blue balls

represent threefold coordinated atoms, green balls represent twofold coordinated atoms.

Figure 8: The sample of amorphous carbon located between two layers of diamond which
is not suitable for further calculations. The sample contain 256 atoms (64 of them are
frozen diamond). The frozen outer layers are separated by black line. After cooling from
16000 K, most part of the hot layer returned to diamond, and only a layer of thickness
of 3 A remained amorphous. Red balls represent fourfold coordinated atoms, blue balls

represent threefold coordinated atoms, green balls represent twofold coordinated atoms.
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Number of hot layers | Temperature sp?/sp? ratio Thickness Band
in diamond unit cells | of heating | in the hot layers | of diamond layer (A) | gap (eV)
after cooling
4 23000 K 0.26 14.2 1,7
4 28000 K 0.34 12.4 1.3
4 30000 K 0.6 12.4 1
5 20000 K 0.27 16.56 2
5 23000 K 0.4 12.4 0.4
6 17000 K 0.26 23.6 3
6 20000 K 0.35 16.56 2.3
6 23000 K 0.45 9.4 0.9

Table 3: The sp?/sp® coordinated atoms ratio, thickness of diamond layer and a band

gap of samples generated in this section

carbon atoms (4x4x4 diamond unit cells) at density of 3.55 g/cc. Initially, atoms were
arranged as perfect diamond. Then an inner cubic cluster of size 2x2x2 diamond unit
cells (7.1x7.1x7.1) was frozen, i.e. the motion of atoms in the cluster was forbidden. The
remaining outer envelope was heated up to 35000 K, all attempts to obtain disordered
liquid phase at lower temperatures failed. Once the liquid phase reached equilibrium,
the temperature was immediately decreased to room temperature. The system remained
stable during further simulations at 300 K (2 ps), however additional structural relaxation
is required. The percentage of sp? and sp® coordinated atoms before a relaxation was

calculated as 73 and 27% respectively.

7.2.3 Other possible geometries

The third type of nanodiamond structure which will be studied in this project is a sample
of diamond nanowires surrounded by amorphous carbon. Detailed conditions of their
creation (such as heating temperature and cooling rate) are yet not clear. It may by
supposed that temperature of heating will higher than in the case of nanodiamond layers

but lower than in the case of clusters.
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b)

Figure 9: The diamond cluster surrounded by amorphous carbon phase (the sample was
built by O. Hershkovitz): a) view from < 001 > direction, b) view from < 210 > direction.
Red balls represent fourfold coordinated atoms, blue balls represent threefold coordinated

atoms, green balls represent twofold coordinated atoms.
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Workplan

. In the first stage of the research the ABINIT code with the Troullier-Martin pseu-

dopotential and the local-density approximation was tested for convergence in order

to choose a suitable cutoff energy for plane-waves as well as a suitable number of

k-points. Some additional comparisons with known theoretical results (for example

calculation of location and energy of hydrogen within diamond lattice) were made.

. The next part of the calculations will be focused on the conditions of sample prepa-

ration by tight-binding molecular dynamics.

(a)

The diamond layers sandwiched between two layers of amorphous carbon will
be generated as described in subsection 7.2.1. The samples with different thick-
ness of diamond layers can be obtained not only by simply increasing of number
of atoms in the system, but by variation of the temperature of heating. The
samples can contain a different fraction of sp? and sp® coordinated atoms in

the outer amorphous layers.

In order to generate diamond nanoclusters inside an amorphous carbon phase,
an outer region of perfect diamond samples of different thicknesses will be
heated up to 35000 K (which is higher than in the case of diamond layers) and
then quenched (see subsection 7.2.2). The inner cluster of perfect diamond will
remain frozen. The simulations will be carried out at different temperatures

and different sizes of the hot envelope.

In order to generate diamond nanowires, i.e. a nanodiamond tube inside an
amorphous carbon phase, a small region with the form of tube inside a perfect
diamond sample will be frozen, and the outer envelope will be heated and
quenched as described in the previous item. The simulations will be carried
out at different temperatures. Wires of different diameter (from 3.55 A and

larger) will be generated.

In this way nanodiamond of different sizes surrounded by amorphous phase of dif-

ferent structure (percentage of sp? and sp® coordinated atoms) will be created.

Structural relaxation of each sample will be carried out by the ab initio method.
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3. The structural properties of each sample (RDF, density profile, percentage of sp?
and sp® in amorphous envelope) will be calculated by the FORTRAN programs,
which were already written in [19]. Electronic properties of each sample will be

obtained as part of the tight-binding and ab initio calculations.

4. Quantum confinement effects, i.e. the dependence of band gap (higher occupied and
lower unoccupied energetic state) on sizes of nanodiamonds will be researched for
different dimensions of the nanodiamond structures (from zero for clusters to two
for layers). Additional factors which can influence the results (for example, history

of sample preparation, structure of amorphous envelope) will be established.
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