next up previous contents
Next: About this document ... Up: No Title Previous: ριλεν

Bibliography

1
L. Pauling, The Nature of the chemical bond, (Cornell University Press, 1948).

2
Sienko/Plane, Chemistry principle and Applications 1979.

3
F. P. Bundy, Physica A 156, 169 (1989).

4
M. S. Dresselhaus, R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials, (Springer-Verlag, 1992).

5
S. Prawer, R. Kalish, Phys. Rev. B 51, 15711 (1995).

6
T.Diaz de la Rubia, G.H. Gilmer, Phys. Rev. Lett. 74, 2507 (1995).

7
G.H. Gilmer, T.Diaz de la Rubia, D.M. Stock, M. Jaraíz, Nucl. Instr. and Meth. B 102 (1995) 247.

8
D.M. Stock, M. Jaraíz, G.H. Gilmer, T.Diaz de la Rubia, Nucl. Instr. and Meth. B 102 (1995) 207.

9
M. Sayed, J.H. Jefferson, A.B. Walker, A.G. Cullis, Nucl. Instr. and Meth. B 102 (1995) 218.

10
V. Konoplev, M.J. Caturla, I.Abril, A. Gras-Marti, Nucl. Instr. and Meth. B 90 (1994) 363.

11
W. Eckstein, Computer Simulation of Ion-Solid Interactions, (Springer-Verlag, 1991).

12
Q. Yang, B.V. King, Nucl. Instr. and Meth. B 106 (1995) 555.

13
W. Wu, S. Fahy, Phys. Rev. B 49, 3030 (1994).

14
J. Tersoff, Phys. Rev. Lett. 39, 5566 (1989).

15
R. Smith, Proc. R. Soc. Lond. A (1990) 431, 143.

16
H. P. Kaukonen, R. M. Nieminen, Phys. Rev. Lett. 68, 620 (1992).

17
B.A. Pailthorpe, J. Appl. Phys. 70, 543 (1991).

18
F. H. Stillinger, T. A. Weber, Phys. Rev. B 31, 5262 (1985).

19
S. Uhlmann, T. Frauenheim, Uwe Stephan, Phys. Rev. B 51, 4541 (1995).

20
D. Saada, M.Sc. thesis, Technion, Israel Institute of Technology (1996).

21
J. Tersoff, Phys. Rev. B 38, 9902 (1988).

22
J.F. Prins, T.E. Derry, J.P.F Sellschop, Phys. Rev. B 34, 8870 (1986).

23
S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Let. 15, 2010 (1991).

24
E.W. Maby, C.W Magee, J. H. Morewood, Appl. Phys. Lett. 39, 157 (1981).

25
J. F. Prins, Phys. Rev. B 44, 2470 (1991).

26
A. Hoffman, S. Prawer, R. Kalish, Phys. Rev. B 45, 12736 (1992).

27
C. Uzan-Saguy, C. Cytermann, R. Brener, V. Richter, M. Shaanan, R. Kalish, Appl. Phys. Lett. 67, 1194 (1995).

28
J.J. Hauser, J.R. Patel, J.W. Rodgers, Appl. Phys. Lett. 30, 129 (1977).

29
N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials, (Clarendon Press, Oxford, 1971).

30
C. Uzan-Saguy, V. Richter, S. Prawer, Y. Lifschitz, E. Grossman, and R. Kalish, Diam. Rel. Mater. 4 569 (1995).

31
C. Uzan-Saguy, R. Kalish, R. Walker, D. N. Jamieson, and S. Prawer, Diam. Rel. Mater. 7 1429 (1998).

32
J. F. Prins, Phys. Rev. B 38, 5576 (1988).

33
J. F. Prins, Phys. Rev. B 39, 3764 (1989).

34
S. Prawer, K. W. Nugent, and D. N. Jamieson, Diam. Rel. Mater. 7, 106 (1997).

35
F. Li, J. S. Lannin, Phys. Rev. Lett 65, 1905 (1990).

36
S. Kugler, K. Shimakawa, T. Watanabe, K. Hayashi, I. László, R. Bellissent, J. Non-Cryst. Solids, 164-166 (1993) 1143.

37
A. F. Goncharov, V. D. Andreev, Sov. Phys. JETP 73, 140 (1991).

38
G. Comelli, J. Stohr, C. J. Robinson, W. Jark, Phys. Rev. B 38, 7511 (1988).

39
D.R. McKenzie, D. Muller, B.A. Pailthorpe, Phys. Rev. Lett 67, 773 (1991).

40
Y. Lifshitz, G.D. Lempert, E. Grossman, Phys. Rev. Lett. 72, 2753 (1994).

41
J. C. Pivin, T. J. Lee, R. Canet, Europhys. Lett. 17, 359 (1992).

42
P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga and W. I. Milne, J. Koskinen, Phys. Rev. B 48, 4777 (1993).

43
N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi and M. Parrinello, Phys. Rev. Lett. 76, 768 (1996).

44
N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi and M. Parrinello, Phys. Rev. B 54, 9703 (1996).

45
C. Z. Wang, K. M. Ho, Phys. Rev. B 50, 12429 (1994).

46
N. A. Marks, Phys. Rev. B 56, 2441 (1997).

47
J. Tersoff, Phys. Rev. Lett 61, 2879 (1988).

48
P.C. Kelires, Phys. Rev. B 47, 1829 (1993).

49
U. Stephan, M. Haase, J.Phys.:Condens. Matter 5, 9157 (1993).

50
G. Galli, R. Martin, R. Car, M. Parrinello, Phys. Rev. Lett 62, 555 (1989).

51
M. T. Yin, M. L. Cohen, Phys. Rev. B 25, 7403 (1982).

52
C. Z. Wang, K. M. Ho, C. T. Chan, Phys. Rev. Lett 70, 611 (1993).

53
C. Z. Wang, K. M. Ho, Phys. Rev. Lett 71, 1184 (1993).

54
J. Robertson, E.P. O'Reilly, Phys. Rev. B 35, 2946 (1987).

55
J. Bernholc, A. Antonelli, T. M. Del Sol, Phys. Rev. Lett 61, 2689 (1988).

56
S. J. Breuer, P. R. Briddon, Phys. Rev. B 51, 6984 (1995).

57
D. Saada, J. Adler and R. Kalish, Int. J. Mod. Phys. C 9, No. 1, 61-69 (1998).

58
J. Chevallier, B. Theys, A. Lusson, C. Grattepain, A. Deneuville, and E. Gheeraert, Phys. Rev. B 58, 7966 (1998).

59
V. S. Vavilov, M. A. Gukasyan, M. I. Guseva, T. A. Karatygina, and E. A. Konorova, Sov. Phys. Semic. Vol. 8, 471 (1974).

60
F. Fontaine, C. Uzan-Saguy, B. Philosoph, and R. Kalish, Appl. Phys. Lett. 68, 2264 (1996).

61
R. Kalish, C. Uzan-Saguy, B. Philosoph, V. Richter, J. P. Lagrange, E. Gheeraert, A. Deneuville, and A. T. Collins, Diam. Rel. Mater. 6 516 (1997).

62
T. H. Borst and O. Weis, Diamond Relat. Mater. 4, (1995).

63
S. Koizumi, M. Kamo, Y. Sato, S. Mita, A. Sawabe, A. Reznik, C. Uzan-Saguy, and R. Kalish, Diam. Rel. Mater. 7 540 (1998).

64
B. Ran, M.Sc. thesis, Technion, Israel Institute of Technology (1997).

65
R. Jones, J. E. Lowther, and J. Goss, Appl. Phys. Lett. 69 2489 (1996).

66
G. Popovici, M. A. Prelas, T. Sung, S. Khasawinah, A. A. Melnikov, V. S. Varichenko, A. M. Zaitsev, A. V. Denisenko, and W. R. Fahrner, Diam. Rel. Mater. 4 877 (1995).

67
K. Okumara, J. Mort, and M. Machonkin, Appl. Phys. Lett. 57 1907 (1990).

68
S. Prawer, C. Uzan-Saguy, G. Braustein, and R. Kalish, Appl. Phys. Lett. 63, 2502 (1993).

69
R. Job, M. Werner, A. Denisenko, A. Zaitsev, and W. R. Fahrner Diam. Rel. Mater. 5 757 (1996).

70
I. M. Buckley-Golder, R. Bullough, M. R. Hayns, J. R. Willis, R. C. Piller, N. G. Blamires, G. Gard, and J. Stephen Diam. Rel. Mater. 1 43 (1991).

71
M. Lannoo, J. Bourgoin, Point Defects in Semiconductors vol. I and II. Theoretical Aspects (Springer, 1981).

72
E. G. Song, E. Kim, and Y. H. Lee, Phys. Rev. B 48, 1486 (1993).

73
D. P. Erchak, A. G. Ulyashin, R. B. Gelfand, N. M. Penina, A. M. Zaitsev, V. S. Varichenko, V. G. Efimov, and V. F. Stelmakh, Nucl. Instr. and Meth. in Phys. Res. B69, 271 (1992).

74
R. D. Johnson, R. A. Street, and R. L. Thornton, Phys. Rev. B 33, 1102 (1986)).

75
J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearton Appl. Phys. Lett. 47, 108 (1985).

76
M. I. Landstrass and K. V. Ravi, Appl. Phys. Lett. 55, 1391 (1989).

77
S. K. Estreicher and M. A. Roberson, Phys. Rev. B 50, 17018 (1994).

78
P. Briddon, R. Jones and G. M. Lister, J. Phys. C: Solid State Phys. 21, L1027-L1031 (1988).

79
H. Katayama-Yoshida, T. Nishimatsu, Y. Motoshiromitzu and N. Orita, International Symposium on Advanced Materials (ISAM '99) p 35 (1999).

80
S. P. Mehandru and Alfred B. Anderson, J. Mater. Res. 7, 689 (1992).

81
X. Zhou, G. D. Watkins, K. M. McNamara Rutledge, R. P. Messmer, and S. Chawla, Phys. Rev. B 54, 7881 (1996).

82
B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988).

83
C. G. Van de Walle, Phys. Lett. Lett. 64, 669 (1990).

84
N. Sahoo, S. B. Sulaiman, K. C. Mishra, and T. P. Das, Phys. Rev. 39, 13 389 (1989).

85
This was stated by the authors themselves in N. Paschedag, H. U. Suter, Dj. M. Maric and P. F. Meier, Phys. Rev. Lett. 2, 154 (1993).

86
R. O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).

87
J. P. Perdrew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

88
J. P. Perdrew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

89
N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

90
J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

91
J. M. Haile, Molecular Dynamics Simulation, Elementary Methods, (A Wiley-interscience publication, 1992).

92
R. Biswas, D. R. Hamann, Phys. Rev. B 36, 6434 (1987).

93
J. Tersoff, Phys. Rev. B 37, 6991 (1988).

94
P. Lodwing, J. Chem. Phys. 18, 365 (1950).

95
M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).

96
A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor, and M. Aoki, Phys. Rev. B 53, 12 694 (1996).

97
A. P. Sutton, Electronic Structure of Materials, (Oxford University Press, 1993).

98
S. Fahy and S. G. Louie, Phys. Rev. B 36, 3373 (1987).

99
J. Harris, Phys. Rev. B 31, 1770 (1985).

100
W. M. C. Foulkes, Phd thesis, University of Cambridge (1987).

101
A. P. Sutton, M. W. Finnis, D. G. Pettifor and Y. Ohta, J. Phys. C: Solid State Phys. 21, 35 (1988).

102
C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, J. Phys. Condensed Matter 4, 6047 (1992).

103
L. Goodwin, A. J. Skinner and D. G. Pettifor, Europhys. Lett. 9, 701 (1989).

104
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

105
D. J. Chadi and M. L. Cohen ibid. 8, 5747 (1973).

106
H.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

107
D. C. Rapaport, The art of molecular dynamics simulation, Cambridge University Press 1995.

108
The visualization was carried out with a C program created on the basis of OpenGL libraries, permitting rotation and translation of a 3D lattice. The only input was the coordinates of the atoms from the MD calculations. More information can be found at http://phycomp.technion.ac.il/publications.html.

109
J. Tersoff, Phys. Rev. B 37, 6991 (1988), Phys. Rev. Lett 61, 2879 (1988), Phys. Rev. B 39, 5566 (1989). The parameters used here in the potential and with the notation of the latter reference, are as follows: $A=1.3936\times 10^3$ eV, B=346.7 eV, $\lambda=3.4879 {\rm\AA}^{-1}$, $\mu=2.2119 {\rm\AA}^{-1}$, $\beta=1.5724\times 10^{-7}$, n=0.72751, c=38049, d=4.384, h=-0.57058, $R=1.8 {\rm\AA}$, $S=2.1 {\rm\AA}$.

110
Alessandro De Vita, Guilia Galli, Andrew Canning, Roberto Car, Nature 379, 523 (1996); Applied Surface Science 104, 298 (1996).

111
S. Nose, Mol. Phys. 52, 255 (1984); W. Hoover, Phys. Rev. A 31, 1695 (1985).

112
D. Saada, J. Adler and R. Kalish, Int. J. Mod. Phys. C 9, 61 (1998).

113
Computations were carried out for the three major crystallographic axes and for directions spanning the angles between them (see Ref. [112] for more details). These compare well with results of previous MD calculations [13] and with measurements [114], the results of which are all in the range of 35 to 80 eV.

114
R. Kalish in ``Properties and Growth of Diamond'', G. Davies edt. INSPEC London 1994 p. 193 and Refs. therein.

115
We used a value of 0.04 for the ratio $\Delta t/\tau$ between the time step and the thermal cooling time constant.

116
K. W. R. Gilkes, P. H. Gaskell, and J. Robertson, Phys. Rev. B 51, 12303 (1995).

117
A. Mainwood in ``Properties and Growth of Diamond'', G. Davies edt. INSPEC London 1993 p. 3.

118
A. P. Horsfield, P. D. Godwin, D. G. Pettifor, and A. P. Sutton, Phys. Rev. B 54, 15773 (1996); P. D. Godwin, A. P. Horsfield, D. G. Pettifor, A. P. Sutton, Phys. Rev. B 54, 15776 (1996); P. D. Godwin, A. P. Horsfield, A. M. Stoneham, S. J. Bull, I. J. Ford, A. H. Harker, D. G. Pettifor, A. P. Sutton, Phys. Rev. B 54, 15785 (1996).

119
A. M. Stoneham, P. D. Godwin, A. P. Sutton, and S. J. Bull, Appl. Phys. Lett. 72, 3142 (1998).

120
M. J. Puska, S. P $\ddot{\rm o}$ykk $\ddot{\rm o}$, M. Pesola, and R. M. Nieminen, Phys. Rev. B 58, 1318 (1998).

121
G. Makov, R. Shah and M. C. Payne, Phys. Rev. B 53, 15513 (1996).

122
M. Kaukonen, J. Per $\ddot{\rm a}$joki, R. M. Nieminen, G. Jungnickel and Th. Frauenheim, preprint.

123
In our calculations for H at the BC site, we found two energy minima, displaced by $\sim$ 0.09 Å from the BC site along the C-C bond, that is at a distance of $\sim$ 1.08 Å from the nearest C atom (close to the average C-H bond in organic molecules). However, the energy difference between these two sites and the exact BC position was too small to be significantly resolved.

124
D. E. Boucher and G. G. DeLeo, Phys. Rev. B 50, 5247 (1994).

125
This argument finds support in a previous study of H in silicon (C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. B 39, 10 791 (1989)), where it was shown that there exists almost degenerate minima which lie in a disk-shaped region centered at the BC site. The minima were found, in fact, slightly away from the BC position, however differing only a little in energy from the BC position.

126
J. Adler and A. Silverman, Comp. in Phys. 6, 277 (1992).

127
For , the energy difference between H at the BC site and H at the T$_{\rm d}$ site is found to be 2.7 eV, which is the highest value reported [77]. Thus, values of $\chi $ lower than 0.87 are meaningless.

128
We also compute, for comparison, the DOS for H at the T$_{\rm d}$ and BC sites. We find that H at the T$_{\rm d}$ site induces an electronic state 1.7 eV above the top of the valence band, while H on the BC site induces a state $\sim$ 0.5 eV above the middle of the energy gap. The relative positions of these levels resembles that computed for H in Si at these sites (C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. Lett. 60, 2761 (1988)).

129
D. Saada, J. Adler and R. Kalish, Phys. Rev. B 59, 6650 (1999).

130
M. Ramamoorthy and S. T. Pantelides, Phys. Rev. Lett. 76, 267 (1996).



David Saada
2000-06-22